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I, INTRODUCTION 

A. The Problem and the Scope of the Paper 

Receiving array technology — the use of an array of sensors to 

accurately, flexibly, and economically determine the characteristics 

of the field which surrounds it — has broad applications in many 

areas, including radar, underwater acoustics, radio direction 

finding, and geophysics. A major problem facing all of these 

applications is the poor resolving capability of physically small 

receiving arrays, along with ambiguities due to sidelobe responses. 

This has led to the search for array signal processing techniques 

which exhibit higher angular resolution capability and low ambiguity. 

To understand the reasons for these problems, we begin with a 

brief discussion of the basic ideas of array theory. Full details 

can be found in a text on antenna fundamentals such as Weeks (1968). 

The array geometry which we will consider is shown in Figure 

1.1. The elements of the array (which could be hydrophones, 

seismometers, or radio antennas) lie in a line along the z-axis. 

This line is known as the line of the array. Element number zero is 

located at z = 0. Assuming the location of element n is z = z(n), 

the distance between elements is z(n) - z(n-l) = Az. The angle 9 is 

the polar angle measured from the line of the array. L is defined to 

be the total length of the array and is equal to (N-l)Az. 
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For simplicity, the elements are assumed to be isotropic, that 

is, they receive signals arriving from any direction equally well. 

Assuming that the array has N elements, and that each of these 

elements has the same gain, the response of the array (using 

conventional processing) as a function of the angle of arrival of the 

signal 9 is controlled by the array factor AF(Y). The magnitude of 

the array factor has the form (Weeks, 1968) 

-islnU/2 Y-

Y = cos 0 + a 

a = element to element phase shift 

X= wavelength of signal being received. 

This function has the form sketched in Figure 1.2. It is a 

periodic function with period Zir. The large response near ip = 0 

is called the main lobe. The other, smaller lobes are the sidelobes. 

The resolution of the array is closely related to the width of 

the main lobe, that is, the distance between the two points of zero 

response, or nulls, nearest = 0. This is sometimes called the 

beamwidth between first nulls (BWFN). A commonly used measure of an 
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Figure 1.2. Array factor magnitude for N - 10 
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array's resolution is the Rayleigh criterion, which states that two 

sources are resolvable if their angular separation is at least 1/2 

BWFN (Kraus, 1966). This limit simply means that the array can look 

at one source with full gain while the second source is in the null, 

and, thus, not interfering. 

The BWFN depends upon the argument of the sine function in the 

numerator of AF. Notice that (with a = 0) 

"I" N N COS0) = ^ COS0 

Thus, the longer the array is in terms of wavelengths, the 

narrower the BWFN, and, hence, the better the resolution of the 

array. This result holds in general, even when a f 0 or when each 

element does not have the same gain (nonuniform excitation). 

Conversely, if the array is small when compared to the wavelength of 

the received signal, the resolution is poor. 

Notice, also, that the sidelobe responses are relatively high. 

For a uniform linear array, the first sidelobe is only about 13 dB 

down from the main lobe. Thus, a strong signal in one of the 

sldelobes could appear to be coming in from the direction of the main 

lobe. Ambiguity in pinpointing the signal's direction of arrival is 

the result. 

The resolution problem brought about by small array size is 

particularly severe when it is desired to perform highly precise 
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direction finding over a broad range of frequencies. Clearly, the 

resolution of an array can be very good at the high frequency end of 

the operating band, where L/X is large. As the sensors tune toward 

the low end, however, the size of the array in terms of wavelengths 

decreases. This, of course, changes the characteristics of the 

pattern and can dramatically reduce the resolution. 

In an effort to minimize this problem, several new array signal 

processing techniques have been developed. These techniques seek to 

make the best possible use of the Information available from the 

array. The motivation behind this approach is the fact that by 

processing the element signals in the optimum manner, the array 

should maintain acceptable resolution over the broadest frequency 

range possible for the given array size. 

The objective of this study is to determine the broadband 

direction finding capabilities of array signal processing 

algorithms. The investigation will address the question, "Is it 

possible to use signal processing array techniques to achieve 

satisfactory broadband direction finding performance with a given 

array size, and, if so, what level of performance can be expected?" 

Satisfactory broadband performance means that the array has (1) high 

resolution — the ability to distinguish sources which are physically 

close in angular separation, (2) low ambiguity — low side lobe or 

spurious responses, and (3) broad bandwidth — the ability to 

maintain this resolution and low ambiguity over a broad range of 

frequencies. 
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This paper will cover the two phases of the research, first, the 

investigation and comparison of array signal processing algorithms 

available, and, second, computer simulation of array performance 

using the most promising algorithms. Also included is the necessary 

background for understanding the operation of the algorithms. 

Section I B is a survey of the literature pertinent to this 

investigation. Chapter II describes the relationship between array 

beamforming and spectral analysis. Array beamforming with these 

algorithms is basically a process of spectrum estimation, and this 

chapter describes the transition from time-series spectral analysis 

to beamforming. Chapter III outlines several of these high 

resolution spectral analysis algorithms, and discusses their 

advantages and disadvantages in the present application. 

Chapter IV and V detail the second phase of the work, where the 

most promising of the techniques are simulated by computer and 

evaluated as to their broadband direction finding performance. 

Finally, Chapter VI presents the conclusions which can be drawn 

from this study and suggests the directions that further research 

might take. 

B. Survey of Relevant Literature 

The literature of spectrum estimation techniques, the heart of 

these high resolution beamforming algorithms, is extensive. Only a 

few particularly helpful references will be cited here, with others 
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mentioned in the sections describing each specific method. 

Kay and Marple (1981), in their excellent tutorial, describe, 

develop, and compare most of the techniques considered here. Their 

comparison of algorithm performance with a data set consisting of 

both narrow and broadband processes is particularly helpful. They 

include many references for more detailed study. 

Modern Spectrum Analysis, an IEEE Press collection of selected 

reprints edited by D. G. Childers (1978), contains many of the most 

important papers written during the development of nonlinear spectral 

analysis techniques. Another excellent source describing these 

techniques is Nonlinear Methods of Spectral Analysis, edited by S. 

Haykin (1979). The chapter by McDonough (1979) directly addresses 

the problem of processing spatial array data. His earlier paper 

(McDonough, 1974) and a paper by Barnard (1982) also deal with this 

topic. A slightly different, but related, approach is taken by 

Gabriel (1980), who compares certain adaptive array algorithms with 

these high resolution spectral analysis techniques. 
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II. DIRECTION FINDING AND SfECTKAL ANALYSIS 

A. Beamforming and its Links with Spectral Analysis 

The purpose of this section is to point out the reasonableness of 

the view that array beamforming can be implemented through spectral 

estimation techniques. The idea that the two problems are closely 

related should have strong intuitive appeal, because many array concepts 

point to it. For example, one of the first principles taught in array 

theory is that the excitation distribution across the aperture of an 

antenna and the resulting pattern in the far field are Fourier 

transforms of each other (Weeks, 1968). Consider also the Butler 

multiple beamforming network. Its diagram is basically the flow diagram 

of a Fast Fourier transform, making the Butler array an analog 

implementation of the FFT (Skolnik, 1980). 

Barnard (1982) points out the link between beamforming and spectral 

analysis in his discussion of conventional beamforming techniques. All 

conventional arrays use one of two methods to form their patterns: 

1. Time shift and sum. The signal striking the array 
from the desired direction is enhanced by inserting 
the appropriate time delay between adjacent elements. 

2. Phase shift and sum. Here, the signal from the 
desired direction is enhanced in the frequency domain 
by inserting the appropriate phase shift between 
adjacent elements. 

Barnard emphasizes that both of these methods are equivalent to a 

direct multidimensional Fourier transform from time and space to 
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frequency and wavenumber. The resulting frequency-wavenumber spectrum 

contains information concerning the power as a function of frequency and 

the vector velocities (directions of arrival) of propagating waves 

(Capon, 1979), 

The following section should confirm the reasonableness of the 

equivalence of beamforming and spectral analysis and place it on firm 

mathematical footing. 

B. The Angular Spectrum of Plane Waves 

The radiation field from which the array is to derive this 

frequency-wavenumber Information is usually assumed to be the 

superposition of an infinite number of sinusoidal waves, of various 

amplitudes and phases, coming from a continuous distribution of far-

distant sources. These waves sweep across the array from their 

individual directions as plane wave fronts (McDonough, 1979). Just as 

Fourier analysis of a time series decomposes the data into complex 

exponentials, frequency-wavenumber analysis decomposes the field Into 

these plane waves (Lacoss, 1976). Many years ago, Booker and Clemmow 

(1950) provided a rigorous basis for these assumptions, and tied it to 

spectral analysis: 

The field at all points in front of a plane aperture 
of any distribution may be regarded as arising from an 
aggregate of plane waves traveling In various 
directions. The amplitude and phase of the waves, as a 
function of their direction of travel, constitutes an 
angular spectrum, and this angular spectrum, appropriately 
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expressed, is, without approximation, the Fourier 
transform of the aperture distribution (Booker and 
Clemmow, 1950). 

Reviewing their discussion of this point will illustrate why the 

distribution of sources in the far field can be computed from a 

knowledge of the spatial frequencies of the resultant signal along the 

line of the array. 

Consider the situation shown in Fig. 2.1. The region x > 0 is 

homogeneous, with propagation constant k and characteristic impedance 

n. For a plane wave in the medium, k is the increase of phase 

difference per unit distance in the direction of propagation. The 

characteristic impedance n is the ratio of electric to magnetic field 

intensities. 

Booker and Clemmow made the following simplifying assumptions in 

their analysis: 

a) All fields oscillate sinusoidally, and have 
wavelength X in the medium. 

b) All fields are two dimensional, with no variation in 
the z-direction. 

c) H is parallel to z, and E is parallel to the x-y 
plane. 

If we maintain an Ê field in the plane x=0, this field will 

propagate into the region x > 0. Thus, we can think of the plane x=0 as 

the aperture of a planar array. We specify in the aperture plane the 
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y-component of E or the z-component of H as functions of y. The fields 

are completely specified by one or the other. 

Suppose that the field propagating in the region x > 0 is a plane 

wave with direction vector (cos 9,sin 0,0). What field distribution in 

the aperture plane would be necessary to generate such a wave? 

Following Booker and Clemraow, let C = cos 0, S = sin 0. 

Then Ë and H can be expressed as 

Ë (x,y) = A (- S,C,0) exp l-jk(Cx+Sy)l (2.1) 

H (x,y) =(0,0,1) exp [-jk(Cx+Sy)] (2.2) 

Setting x=0 to get the aperture distribution required, and looking 

at the y-component, 

Ey(0,y) = AC exp (-jkSy) (2.3) 

Notice that this is a wave traveling over the aperture of the array 

with a propagation constant kS. Any wave of this form produces a plane 

wave in the medium in the direction 0 corresponding to sin 0 = S . If 

we looked at the signal along the y-axis at any given moment, the 

distribution of the field would be a sinusoidal function of y. The 

spatial frequency of this sinusoid, in cycles per unit distance, depends 

upon kS, which, in turn, depends upon the angle of departure 0. If we 
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turned the situation around, we could compute the angle of arrival 9 of 

a plane wave striking the array from a knowledge of the spatial 

frequency of the signal along y. 

It is possible for kS to be greater than k, leading to an imaginary 

9. This situation corresponds to an evanescent (nonpropagating) wave 

hugging the aperture. This wave would be the source of reactive terms 

in the near field. 

Suppose that the aperture distribution were not quite as simple as 

the single sinusoidal traveling wave. By Fourier analysis, a complex 

distribution could be broken down into an infinite sum of sinusoidal 

waves, each having different propagation constants along the y-axis. 

Each of these components will give rise to a plane wave propagating in a 

direction 0 (or to a reactive field). 

Each wave has, in general, a different amplitude and phase, with 

the combination of them all forming what Booker and Clemmow called an 

angular spectrum of plane waves. 

The constant A is a complex number which determines the amplitude 

and phase of a wave at the origin. It will be different, in general, 

for each wave. Thus, it will be a function of S. Define the function 

P(S) = XCA(S). (2.4) 
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Substituting Eq. 2.4 into Eqs. 2.1, 2.2 and 2.3, and summing the 

contribution of all of the waves in the angular spectrum, that is, 

integrating over S from -«> to <*>, we obtain 

Ë (x,y) = Y / P(S) (-S,C,0) exp [-jk(Cx+Sy)] ̂  (2.5) 

H(x,y) = ~ / P(S) (0,0,1) exp [-jk(Cx+Sy)] (2.6) 

produced by the aperture distribution 

1 °° 
Ey(0,y) = f / P(S) exp (-jkSy) dS (2.7) 

Note that ̂  is simply d0 

Compare equation 2.7 with 

f(t) = ^ / S(w) exp (jut) do), (2.8) 

the inverse Fourier transform in the time domain. If we make the 

following substitutions: 
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Time Domain Spatial Domain 

t -y 

f(t) Ey(O.y) 

u) kS 

SCoJ ) P(S) 

we see that Eq. 2.7 and Eq. 2.8 are of the same form. 

The expression for the forward Fourier transform in the time domain 

is 

00 

S(w) = / f(t) exp (-jut) dt 

Substituting the appropriate spatial variables, we obtain 

00 

P(S) = / E (0,y) exp (jkSy) dy 
—00  ̂

Thus, the aperture distribution of the field and the angular 

spectrum of plane waves form a Fourier transform pair in the spatial 

domain. 

The major objective of direction finding with an array is to 

determine the power and angle of arrival of each of the components in 

the angular spectrum. Clearly, in this simplified case, this 

information can be determined from spectral analysis in the spatial 

domain of the signal in the aperture. 
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Direct application of these ideas to beamforming, however, could 

run into several major problems. First, physical signals will always 

contain random components, due to receiver and ambient noise sources, 

fluctuations in the propagation medium, etc. This situation may require 

a probabilistic, or stochastic, description of the field. Just as 

conventional time-domain analysis must be modified when dealing with 

stochastic signals, so must conventional array spatial processing be 

modified when dealing with stochastic fields. Second, notice from the 

limits on the integral that to compute the angular spectrum exactly, a 

knowledge of Ey(0,y) is required for all y. This would require an array 

of infinite extent unless one knew, as in the transmitting case, what Ey 

were outside the dimensions of the array. A finite amount of data will 

have great impact upon the attainable resolution, just as it does in 

time-domain processing. These problems will be discussed in the 

following section. 

C. Frequency-Wavenumber Analysis of Array Data 

The first problem mentioned in the preceding section, that of 

processing stochastic fields, can be handled in a manner analogous to 

the procedure for time-series analysis. This method uses the Wiener-

Khinchine relation, which links the correlation function and the 

spectral density. The problem of limited data is particularly 

troublesome in the spatial domain, where obtaining more data points can 

be very difficult. This second problem has been the impetus for the 
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great deal of interest in applying high resolution spectral analysis to 

array beamforming. 

I. Correlation processing of array data 

McDonough (1974, 1979) has dealt thoroughly with the analysis of 

spatial array data using correlation processing. Following his 

development, we assume 

x(t,z) = signal at point z in array. 

As discussed above, we consider x(t,z) to be the superposition of 

infinitely many plane waves of the form, exp (j2ir(ft + vz)), where v is 

defined to be the vector wave number. (2nv = k, where k is the vector 

propagation constant.) 

The wave propagation is in the direction of -v, with phase velocity 

V = f/|v|. 

As we did before, we must sum up the contributions of waves of 

every frequency and wavenumber, so that 

x(t,z) = / / X(f,v) exp [j2ir(ft + v*z)] dv df. 
—00 V 

V refers to all wavenumber space. 
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X(f,v) is a complex phasor representing the amplitude and phase of 

the plane wave component in the frequency and wavenumber ranges (f, f + 

df) and (v,v + dv). X(f,v) is taken to be an independent random 

variable at each f and v* 

We want to find the average power of each travelling wave component 

S^(f,v) = E [|X(f,v)|2] , 

where E[*] is the expectation operator, by processing those values of 

x(t,z) which are available from the array. 

Motivated by the fact that the correlation function and the 

spectral density are related by Fourier transform in time-series 

analysis, consider the time-space covariance function of the array data: 

C^(T,r) = E [x(t+T,  z+r) x (t,z)] 

We assume that the field possesses wide sense stationarity, so that 

depends only upon time lag T and spatial offset r, not on the values 

of t and z. 

Using the integral expression for x(t,z), and remembering that the 

elemental sources were assumed to be independent, we find that 

00 

c (T,r) = / f S (f,v) exp [jZnCf? + vr)J dv df 

*  - « . V  
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This can be recognized to be a multidimensional inverse Fourier 

transform, so that the frequency-wavenumber spectrum we are looking for 

is given by the forward transform 

00 

S (f,v) = / / C (T,r) exp[-j(ft+y r)] dr dT, 

—00 V 

where V now refers to r space. 

The strategy for frequency-wavenumber analysis, then, is simple: 

estimate the space-time covariance function of the data and then compute 

its spectrum (McDonough, 1979). 

If there is an upper bound on the frequencies striking the array, 

then |v| also has an upper bound, and x(t,z) is band limited in the 

space variable z. In that case, C^(T,r) is limited in r. Using 

sampling theory, this means that the spectrum can be computed from a 

sufficient number of equally spaced samples of C^(T,r) sampled in 

r (calculated from the signal values at the element of a discrete 

array), using any spectrum estimation technique which can be used with 

time series. Thus, each time-domain spectral analysis procedure is also 

an array direction finding algorithm. Hijh resolution spectral 

estimation techniques will yield high resolution direction finding 

algorithms (McDonough, 1974), and it is with these techniques that we 

will mainly be concerned. 
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2. The resolution problem 

Our goal is to estimate the frequency-wavenumber spectrum 

00 

S (f,v) = / / C (T,r) exp [-j2n(f+v r)] dr dt 
* -00 V 

from values of the signal x(t,z) at a finite number of points in space 

(the values of z where array elements are located). These points are 

also contained within a finite region of space; physical arrays cannot 

be infinitely large. Working in three dimensions for generality, assume 

that the array is contained in a cube with -L<x<L, -L<y<L, and 

-L<z<L. What this means is that we do not have the estimates available 

for the cross covarlance function C (t.r) over all values of r , 
X 

although the expression above requires them for all r. A similar 

problem exists with the values of time delay T. We can gather data 

only for a finite period of time T. Thus, the time and space lags 

available are -2T<T<2T, -2L<r^<2L (where r^ = x, 1=1, = y, 1=2, = z, 

1=3), and the estimate of the frequency-wavenumber spectrum is 

S (f,v) = / / C (T,r) exp [-j2n(fT+v«r)j dr dt 
* -2T<T<2T -2L<r^<2L 

(where the ̂  over the function indicates that it is an estimate) 

Whereas the original expression gave the frequency-wavenumber 

spectrum exactly, with perfect resolution of adjacent sources, this 
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estimate cannot provide such performance. How well it does depends upon 

the resolution properties of the spectral analysis technique used. 

The performance of conventional linear methods of spectral 

analysis, such as the Blackman-Tukey autocorrelation approach or the 

averaged periodogram technique, depends very heavily on the length of 

the data sample (in both space and time). It is well-known that the 

resolution of these linear methods is roughly equal to 1/T in the 

frequency domain. Similarly, the resolution in wavenumber will be 

proportional to l/L. 

Implicit with these techniques is a windowing of the data. This 

problem will be discussed in more detail in the description of maximum 

entropy spectral analysis, but the basic consequence of windowing is a 

reduction of resolution. Kay and Marple (1981) state that data 

windowing is the fundamental factor in determining the frequency 

resolution of the periodogram. It influences the resolution so strongly 

because the spectral estimate is the convolution of the true spectrum 

and the transform of the window function. 

If the power in the actual spectrum is concentrated in a narrow 

band, the convolution with the spectrum of the window function will 

spread the power out into adjacent frequencies. This is called 

leakage. The problem is particularly bad with short data sets, since 

then the window function must necessarily be narrow. The narrow window 

has a broad spectrum which can spread power over a broad frequency (or 

wavenumber) range during the convolution. 



www.manaraa.com

23 

Another aspect of, this same problem concerns sidelobes. If the 

data are merely truncated, the window function implicit in the analysis 

is rectangular. The spectrum of a rectangular function has many large 

sidelobes, half of which are negative. Clearly, in the convolution 

process a strong adjacent signal in a sidelobe could completely mask a 

weaker signal in the main lobe. It is even possible to get an estimate 

of negative power from signals in the negative sidelobes. Sidelobes can 

be reduced by "smoothing" or tapering the window function appropriately, 

but this always broadens the main lobe of the window transform, leading 

to a reduction of the resolution of the spectral estimate. 

Kay and Marple (1981) point out a misconception concerning the 

resolution of the periodogram approach. Quite often, zeros are appended 

to the end of a data record prior to transforming to give an apparently 

longer sample. The effect of this procedure is to interpolate between 

the values which would be obtained from a non-zero-padded transform. It 

results In a smoother spectrum, but does not improve the resolution of 

the technique. 

The actual resolution of linear processing methods can only be 

improved with more data. Returning to the array signal processing 

problem, it is apparent that improving the resolution in frequency 

requires only that the equipment spend more time gathering data. 

Improving the wavenumber resolution, the ability to distinguish sources 

which are close together in angle, however, would require a larger 

array. Often, given system constraints, this is not possible. 
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In estimating the frequency-wavenumber spectrum, then, the 

assumption is that T is large but L is not. That is, for each frequency 

we desire to look at, many more oscillation periods occur in time T than 

there are wavelengths across L. Conventional processing will suffice 

for the time domain but not the spatial domain. McDonough (1979) 

commented: 

...the trade-off between data processing effort as opposed 
to increased data collection heavily favors the former, in 
the spatial domain, and nonlinear spectral estimation 
methods have been of great interest in array processing 
for that reason. 

The nonlinear methods of spectral estimation are especially useful 

when good resolution of spectral peaks is desired (Pisarenko, 1973). 

This is exactly the desired result in direction finding with an array. 

Gabriel (1980) explains that this additional spatial information is 

obtained over the results of a conventional array because the array 

degrees of freedom are being used in a more effective, data adaptive 

manner. 

Chapter III will discuss several of these nonlinear techniques and 

compare their performance in array applications. 

D. Direction Finding with a Linear Array 

In all of the discussion that follows, the array under 

consideration will be a discrete, equally spaced, linear array of 

isotropic receiving elements. Because it Is symmetric, such an array is 

unable to distinguish sources with the same angle of incidence with 

respect to the line of the array. The linear array is therefore blind 
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to differences in polar angle in each plane perpendicular to the array 

axis (Barnard, 1982). 

Another way of saying this is that the array is sensitive only to 

the wavenumber component which lies along the line of the array. This 

component is a function of both wavelength and angle of arrival. 

Assume that the array lies along the z-axis. From Figure 2.2, we 

can see that the component of wavenumber along the array is 

V = T" COS0 = — COS0, 
z X V 

where f is the frequency of the signal and v is the velocity of 

propagation in the medium. Solving for 0, 

-1 (v)(vz) 
0 = cos ( ^ ). 

Returning for a moment to the discussion in Section II C 1., recall 

that 

00 

S (f,v) = f f C (x.r) exp [-j2n(fT+vr)J drdt. 
* -00 V 

Let 

00 

P(f,r)= / C (T,r) exp [-j2KfTj dx 
-00 * 

Then 

S(f,v) = / P(f,r) exp t-j2Trvrj dr, 
V 
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which for a linear array along the z-axis becomes 

2L 
S(f,Vjj) = 7^ P(f,r) exp [-j2nv2r]dr 

1 
= / P(f,r) exp [-j2ir(— cos9)r]dr 

-2L / 

If we draw an analogy between this wavenumber spectrum and time-

series analysis, it is clear that plays the part of frequency, and 

element location plays the part of the time-sampling Instant. P(f,r) is 

the function whose spectrum is being computed. If the interelement 

spacing Az is no more than X/2 at the highest signal frequency of 

interest, all energy in the spectrum S(f,v^) lies in the wavenumber 

range [-W/2, W/2], where W = (Barnard, 1982). This is the 

spatial equivalent of the sampling theorem. Once the wavenumber 

spectrum is computed the results can be plotted so that 

= cos 

giving the power of each plane wave component as a function of angle of 

arrival 0. 

With this background of the extension of spectral analysis 

algorithms to array direction finding, we are now ready to investigate 
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several high resolution spectral analysis techniques. The hope is to 

find techniques with resolution sufficiently high that they will allow 

useful array direction finding performance over a much broader range of 

operating frequencies than conventional methods. 
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III. HIGH RESOLUTION SPECTRAL ANALYSIS ALGORITHMS 

The past fifteen years have seen the development of several new 

spectral analysis algorithms, along with the reconsideration of some old 

ones. These spectral density estimators, called nonlinear because their 

design is data dependent (Haykin, 1979), can, under the proper 

conditions, exhibit much higher resolution than conventional 

techniques. The resolution advantages of two of these methods in 

particular, the maximum likelihood method (MLM) and the maximum entropy 

method (MEM), are most significant when processing short data sets 

(Gabriel, 1980). This implies potential for improved resolution for 

array antennas with few elements. Unfortunately, when conditions depart 

from ideal, the performance of these algorithms can degrade 

significantly. 

In this section, we will consider the advantages and disadvantages 

of several of these new high resolution spectral estimators. The goal 

is to determine which of these techniques, if any, could provide 

Improved broadband array direction finding performance. 

A. The Maximum Likelihood Method 

MLM was originally developed by J. Capon (1969) as a tool for 

analyzing the data from a very large seismic array. Thus, the original 

use of the technique was for frequency-wavenumber analysis. Capon 

(1979) states that the wavenumber resolution achievable by MLM is much 

greater than conventional methods and is limited primarily by the 

signal-to-noise ratio. 
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Gabriel (1980), in his description of a type of adaptive array 

whose operation is equivalent to an MLM spectral estimation, listed 

several advantages of this technique: 

1. It permits calibration and measurement of the 
relative source strength of a single signal. 

Other methods (MEM in particular) do not give a 

clear or accurate estimate of signal strength. 

2. A pseudolinear superposition holds at the peaks, 
if the sources can be resolved, giving true 
relative source strengths among several signals. 
Again, some other methods cannot do this. 

3. The output of the filter is a real, physical 
signal. Steered to a particular source, one can 
monitor it at full array gain while rejecting all 
others. Other techniques do not provide physical 
signals. (A null, for example, can give a very 
good indication of angle of arrival, but the 
signal coming in at that angle cannot be monitored 
at full gain.) 

4. The residual background ripple is low and well 
behaved. 

5. The elements do not need to be equally spaced or 
near \/2 apart. (Efficient solution of MEM 
requires equal spacing.) 

The basic idea of MLM is that the power spectral density (PSD) is 

estimated by measuring the power out of a set of narrow band filters. 

The coefficients of the filters are chosen so that the response at the 

frequency of interest is unity and the output variance is minimized. 

The filters adjust to reject power from other frequencies not near the 

frequency of interest in an optimal, adaptive manner. 



www.manaraa.com

31 

The conventional Fourier transform methods can also be considered 

to be a bank of filters, in this case, at harmonically related 

frequencies. The difference between the transform methods and MLM is 

that the shape of the MLM filter changes, in general, for each frequency 

to optimally reject out of band signals. The shape of the transform 

method filter is fixed (Kay and Marple, 1981). 

The MLM filters are finite impulse response (FIR) with p filter 

weights a^, i = 0,l,"*,p-l. 

The derivation of the method involves minimizing the output 

variance (output power) 

. Â"R Â, 
XX 

where is the signal correlation matrix, subject to the unity 

frequency response condition at f 0 

Â =  1 .  

Here, the H indicates Hermitian transpose, and 
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E = [1 expCjZïïfgAt) expCjZnlp-llfgAt)] 
T 

The spectral estimate, , corresponding to this optimal set 

of filter coefficients can be shown to be 

Despite the advantages of MLM cited above, the method has several 

serious disadvantages which have discouraged its use. The first problem 

with the method is that, although it can have more resolution than 

Blackman-Tukey (BT) estimates or the periodogram, it has less resolution 

than the autoregressive estimate (AR or MEM) (Kay and Marple, 1981). 

Burg (1972) very neatly explained this when he showed analytically 

that the MLM is actually an average of MEM spectra of order one to p; 

The low order, low resolution MEM spectra combine with the high 

order, high resolution MEM spectra to produce a smoothed, lower 

resolution result. Its variance, however, is less than the MEM estimate 

(Kay and Marple, 1981). 

A second problem which could lead to doubts about its use is that 

the inverse Fourier transform of the MLM spectral estimate does not give 

- -1 
Note the dependence upon the data through 

ML MEM 
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back the original autocorrelation function. The inverse transform of an 

MEM spectrum, on the other hand, does (Kay and Marple, 1981). 

The most serious problem with this method (and the other nonlinear 

spectral estimators as well), however, is that the resolution may 

deteriorate very seriously if the actual data structure does not fit our 

assumptions about it. MLM appears to be particularly sensitive to 

this. Its resolution can actually become worse than the conventional 

techniques if the incoming waves depart from their assumed planar form 

(Seligson, 1970). Evans (1979) and White (1979) both found that the 

performance of MLM was quite poor when there is correlated 

interference. Evans concluded that MEM was able to offer substantially 

better performance than MLM and conventional beam sum techniques. 

For these reasons, MLM will not be pursued further in this work. 

The next section will provide background for a more promising technique: 

the maximum entropy method. 

B. The Maximum Entropy Method — Autoregressive Techniques 

1. Basic ideas 

The maximum entropy method (MEM) was introduced in 1967 by J. P. 

Burg (1978) for the processing of geophysical data. 

MEM differs from conventional methods of spectral analysis in a 

very fundamental way. In conventional spectral analysis, values of 

autocorrelation lags for which no data are available are assumed to be 

zero. Those values which are known are usually tapered smoothly to zero 
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to reduce the sidelobes of the data window function. The effect of this 

is to seriously reduce the resolution. Burg's idea was to extend the 

autocorrelation function (thus, increase the resolution) by estimating 

its values from a knowledge of the previous lags. 

To ensure that this procedure does not bias the resulting spectrum, 

the extension must be done in such a way that it adds no information to 

the process. The idea is to choose the spectrum which corresponds to 

the most random time series whose autocorrelation agrees with all of the 

known values. This condition corresponds to the concept of maximum 

entropy as it is used in information theory (Haykin and Kesler, 1979), 

hence the name maximum entropy method. 

Like MLM, MEM can be thought of as a digital filter which adjusts 

itself to be least disturbed by power at frequencies different from the 

one to which it is tuned (Haykin and Kesler, 1978). 

The maximum entropy method has several attributes which make it 

well-suited for high resolution direction finding over a broad frequency 

range. First, it has greater (often much greater) resolution than 

conventional techniques. A second, particularly important advantage is 

that it is very well-suited to the analysis of short data records. This 

is highly desirable when dealing with arrays which have a small number 

of elements. The computational load is of the same order of magnitude 

as conventional methods (Haykin and Kesler, 1979). And, because there 

is no windowing of data, there are no sidelobes. Thus, the ambiguity of 

the array should be low (Burg, 1978), 
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2. Implicit models 

To better understand why MEM has these advantages, let us first 

examine the differences between the assumptions of this method and the 

conventional Blackman-Tukey (BT) and periodogram (FFT) approaches. 

All spectrum estimators make some sort of assumptions about the 

data being analyzed. These assumptions imply a particular model for the 

input data. According to Kay and Marple (1981), the differences in the 

performance of different spectral estimators are often due to 

differences in how well the models assumed by each estimator describe 

the process being analyzed. 

Conventional FFT analysis implies a Fourier series model. In other 

words, the input data are assumed to be the weighted sum of a set of 

harmonically related sinusoids. The resulting periodogram is a least-

squares fit of the data to this model. 

Note that any noise present in the input signal is not accounted 

for explicitly in the model. It must also be represented by the 

harmonic sinusoids. This is the reason for the need to average over an 

ensemble of FFTs to obtain a stable estimator (Kay and Marple, 1981). 

The most important implication of this underlying model is that the 

input data are periodic. Whether this assumption is significant or not 

depends, of course, on the problem, but for short arrays and noisy 

signals, it is clearly not correct. 

The other commonly used conventional spectrum estimator is the 

Blackman-Tukey autocorrelation method. This approach makes use of the 
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fact that the autocorrelation function (AC) and the power spectral 

density function form a Fourier transform pair. The idea is to 

calculate an approximate autocorrelation function from the data 

available and then Fourier transform it to get the power spectrum. The 

autocorrelation function, as discussed earlier, can be only approximated 

due to the finite extent of the data. The unavailable lag values are 

assumed to be zero, and the resulting truncation, which implies a 

rectangular AC window function, introduces severe sidelobe problems. To 

reduce these difficulties, the known AC values are modified by a window 

which tapers smoothly to zero at the ends of the known lag interval. 

When considered carefully, both the FFT and BT methods strongly 

violate what Abies (1974) calls the First Principle of Data Reduction: 

The result of any transformation imposed on the 
experimental data shall incorporate and be consistent 
with all relevant data and be maximally non-committal 
with regard to unavailable data. 

The FFT assumes that the input data repeat periodically — which is 

certainly not maximally noncommittal. The BT approach violates both 

aspects: unavailable lags are assumed to be zero, and known lag values 

are modified in a very ad hoc fashion by a fixed window. The price paid 

for these violations of the First Principle is less than maximum 

resolution. 

According to Abies (1974), MEM attempts to set up new rules for 

determining the spectrum which abide by the First Principle as closely 

as possible. 
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The model implied by MEM allows more realistic assumptions about 

the unavailable data than that they are zero. MEM retains all of the 

known lag values without modification. It estimates the values of the 

unknown autocorrelation lags (Burg, 1978). Thus, windows and the 

distortion they introduce are eliminated. 

Van den Bos (1971) has shown that the model of the input process 

implied by MEM is an autoregressive (AR) model. An autoregresslve model 

for a sequence x has the form 

x(n) = a^^ x(n-l) + a^ x(n-2) + • • • + a^ x(n-M)+e^, 

where x(n) is the current value of the sequence, x(n-l) is the previous 

value, etc., the a's are the coefficients of the AR model, and is a 

noise term. 

The name autoregressive comes from the fact that a linear model 

which relates a dependent variable x(n) to independent variables x(n-l), 

x(n-2),''" x(n-M) is known as a regression model (Robinson, 1979). 

Since, in this case, the sequence x Is regressed on itself, the model is 

called autoregressive. 

MEM performs a least squares fitting of the coefficients of the AR 

model (a^, a^, •••, a^) to the input process (Van den Bos, 1971). 
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3. Linear prediction and spectra 

It is probably not immediately apparent why the parameters of the 

AR model of a sequence should be related to the maximum entropy 

spectrum. The derivation of the maximum entropy spectrum from 

information theory concepts is mathematically complicated and will not 

be repeated here. (For details, see Ulrych and Bishop (1975), or Haykin 

(1979).) Once the connection between this spectrum and that of an 

autoregressive process is accepted, however, it is not difficult to see 

how the spectrum of the input sequence can be computed from those 

parameters. We will look at this relationship and at the computation of 

the parameters from the viewpoint of linear prediction. 

Suppose we have a sequence x(n) to which we wish to fit an AR 

model. That is, we want to find the coefficients a^, a^, -••, a^ in the 

equation 

x(n) = a^x(n-l) + a^ x(n-2) + a^ x(n-3) + ••• + a^ x(n-M) + 

such that the noise sequence, which we now consider to be an error 

sequence, is a minimum. In other words, we compute an estimate 

x(n) = a^x(n-l) + a^ x(n-2) + "» + a^ x(n-M), 

where x(n) - x(n) = e(n). 
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This process Is called linear prediction, since we predict the 

value of x(n) from a linear combination of past values 

x(n-l), x(n-2), •••, x(n-M). is the prediction error to be minimized 

by proper choice of the a's. 

This procedure is illustrated in Figure 3.1. The case of M=4 is 

shown. N, the length of the sequence, is 11. Here, members of a 

sequence x(n) are being predicted by multiplying the value of the 

sequence at a point by the coefficient immediately below it. The M 

products are then summed to produce an estimate of the next number in 

the sequence. In general, both the sequence and the coefficients can be 

complex numbers. The predicition filter is then advanced one element in 

the sequence and the next value is predicted. 

A total of N-M prediction equations can be written without 

extending the prediction filter beyond the ends of the data sequence: 

M 
x(n) = S a, x(n-k) M < n < N 

k=l 

The filter may then be reversed, its coefficients conjugated, and 

then run backwards over the data to yield N-M more prediction equations 

(Ulrych and Clayton, 1976). Prediction error equations are written from 

these 2(N-M) prediction equations. Efficient algorithms exist for 

finding the solution which minimizes the prediction error (Ulrych and 

Bishop, 1975; Marple, 1980). 
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L I N E A R  P R C D I C T I O N  
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Figure 3.1. Linear prediction M = 4, N = 
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An implementation of a prediction error filter is shown in Figure 

3.2. The blocks with z ^ inside represent unit time delays. This 

filter has a transfer function H(z) which we will define as the 

z-transform of the output sequence divided by the z-transform of the 

input sequence: 

H(.) = îisMi 

If the input sequence x is accurately represented by the 

autoregressive model, this prediction error filter will remove all of 

the predictable components of the input spectrum. The output sequence 

E will then be completely random (unpredictable). The spectrum of a 

completely random sequence is uniform, or white. (The prediction error 

filter is often called a whitening filter for this reason.) Thus, the 

output spectrum is Z{e(n)} = a constant. 
u, 

Since 

= 4#^ • H&r - M ° 
""k l-E a z K 

k=r 

all of the spectral information (to within a constant) is contained in 

the zeros of H(z). These zeros are determined by the model coefficients 
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Figure 3.2. Prediction error filter block diagram 
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Thus, an algorithm which fits an autoregressive model to a sequence 

also gives the Information needed to determine the maximum entropy 

spectrum of the sequence. We see that the maximum entropy method 

generates a unique filter based on information contained in the 

available data samples. The input spectrum is proportional to the 

reciprocal of the power response of this filter (Chen and Stegen, 1974). 

The autoregressive model has M/2 pole pairs available to be placed 

in the z-plane to form the modelling filter. Since real frequencies 

fall on the unit circle in the z-plane, the resolution depends upon how 

near these poles are to the unit circle. This model can realize 

arbitrarily narrow passbands at M/2 different frequencies. Unlike the 

Fourier series model, these frequencies need not be harmonically 

related. 

4. Applicability of the AR model 

The AR model is a special case of the class of rational transfer 

function models. Many discrete processes, that is, processes whose 

values are defined only at discrete points in time or space, can be 

well-represented by models of this type (Kay and Marple, 1981). Both 

deterministic and random processes can often be approximated in this 

way. 

The most general model of this type relates an input sequence 

e(n) to an output sequence x(n) by the difference equation 
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P q 
E a^x(a-k) + Z 

k=l Z=0 

x(n) = E a^x(a-k) + Z b^e(n-a). 

Note that if ail of the b's are zero except b^, we have an AR model 

similar to the one discussed earlier. If all of the a*s vanish, the 

output is a simple moving average of the past q+1 inputs. This yields 

what is known as a moving-average (MA) process. If both kinds of terms 

contribute, the process is known as autoregressive-moving-average 

(ARMA). 

The transfer function H(z) relating the input and output sequences 

is rational: 

E b r-

. - O F  

1 - E a z 
m=l ™ 

Since the moving-average components contribute the zeros of this 

rational function, a moving-average process is also known as an all-zero 

process. Likewise, AR processes are called all-pole processes. 

A theorem of statistics known as the Wold decomposition theorem 

says that a stationary ARMA or MA process can be represented by an AR 

process of possibly infinite order p (Kay and Marple, 1981). Modelling 

an ARMA process with a finite order AR model, the peaks in the spectrum 

are more accurately represented than the troughs, since the troughs 

correspond to the zeros of the MA part (Gersch and Sharpe, 1973). A 

higher order AR model must be used to compensate. If this is done. 
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however, nearly every time series found in real problems can be 

accurately represented by a finite AR model (Haykin and Kesler, 1979). 

These facts are Important for a very good reason. An AR model 

leads to linear equations, as we saw earlier. The other two models do 

not. This gives AR representations a very significant computational 

advantage. 

Another advantage of the AR model has to do with pole-zero 

locations in the complex z-plane. If the order of a (p,q) ARMA process 

is overestimated, the model puts spurious zeros on the unit circle, 

where they can have tremendous impact on the resulting spectrum. The 

spurious zeros of the AR model tend to be further inside the unit circle 

where they have less of an effect (Ulrych and Clayton, 1976). We will 

have more to say about this in a later section. 

Of course, how good the results of AR spectral analysis are depends 

upon whether the AR model is appropriate and upon the accuracy with 

which the data values are known (Frost, 1976). Since it employs an AR 

model, the maximum entropy method works best for AR processes. If the 

model does not fit the process being analyzed, the results are not as 

good. 

As we saw in Chapter II, the estimation of the frequencies of 

sinusoids is particularly important in the array direction finding 

problem. A sinusoid can be considered to be a strong resonance of a 

very narrowband filter. Thus, at a high signal-to-noise ratio (SNR), an 

AR filter model is a good representation of the process. As we will 
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see, however, at a low SNR this model will give poor results, especially 

if the filter order is too small (Frost, 1976). 

The role played by the model order is very important. If, in the 

ideal case, the order of the estimate is the same as the order of the 

actual process, the parameters are maximum likelihood estimates 

(Gerhardt, 1978). Using a model order which is too low broadens the 

resultant spectral peaks and lowers the resolution. If the MEM filter 

order is too high, the filter amplifies the effects of the noise and 

produces spurious spectral peaks of significant magnitudes (Chen and 

Stegen, 1974). 

Since the maximum entropy method is equivalent to using an AR model 

to represent the input sequence, it is possible to apply the results of 

AR time series analysis for determining the appropriate model order to 

use (Ulrych and Bishop, 1975). Several criteria have been applied, 

including the Final Prediction Error (FPE) criterion, the Information 

Theoretic criterion (AIC), and the Autoregressive Transfer Function 

criterion (CAT). (See Haykin and Kesler, 1979.) 

These criteria have been applied in time series analysis with some 

success. Ulrych, however, notes that the FPE criterion was of limited 

usefulness when dealing with short realizations of harmonic processes. 

He found that limiting the model order to between N/3 and N/2 gave the 

most consistent results (Ulrych and Clayton, 1976). Haykin and Kesler 

(1979) also reported that the filter order should be some percentage of 

the record length N. They mention that the optimum value usually lies 

in the range 0.05N to 0.2N. 



www.manaraa.com

47 

5. Factors affecting the resolution of MEM 

At a high signal-to-noise ratio (SNR), autoregressive techniques 

can place poles very close to the unit circle. This can lead to very 

high resolution. When a significant amount of noise is present, 

however, the pole locations must be moved away from the unit circle in 

order to model the data. As a result of this, resolution is degraded to 

that of the Fourier techniques (Frost, 1976). This degradation should 

be expected. Noise turns an AR process into an ARMA process, and the 

all-pole model implied by MEM is no longer valid (Kay and Marple, 1981). 

Marple (1978) found empirically that the resolution of this 

technique is proportional to a power (approximately -0.31) of the 

signal-to-noise ratio expressed as a fraction, times the number of 

available autocorrelation lags. He states that at 20 dB SNR, MEM has 

roughly four times the resolution of an FFT, at 0 dB SNR it has twice 

the resolution, and at -10 dB the resolution is almost the same. 

Chen and Stegen (1974) note that increasing both the number of data 

points and the model order improves the spectrum estimate of a noisy 

signal. This is reasonable, since a larger model order makes more poles 

available for representing the data. The poles representing the desired 

signal do not have to be displaced as far from their proper locations 

since there are poles available to account for the noise. Since the 

number of prediction equations is 2(N-M), however, increasing the model 

order M without also increasing the number of points N will reduce the 
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number of equations. This, in effect, reduces the averaging that the 

algorithm can perform in solving for the prediction filter 

coefficients. The variance of the frequency estimate is increased as a 

result. This point will be discussed further when we talk, about 

improvements to MEM. 

In the two sinusoid case, the relative phase between the signals 

also influenced the resolution. Zero phase difference at the beginning 

of the sampled interval was found to give the worst two sinusoid 

resolution. Marple (1978) explains this effect qualitatively by noting 

that the net transform of two or more windowed sinusoids is the result 

of the interference between the sidelobes of the ^ functions. This 

interaction is a function of the initial phase. 

6. Special problems of MEM 

MEM has several special problems which must be taken into account 

in its application. One of the most important of these problems is 

called line-splitting. Line-splitting occurs when a valid, single 

spectral peak splits into two closely spaced peaks. This effect is also 

quite phase and noise sensitive. It is worst when an odd multiple of a 

quarter cycle of the input signal is contained in the sampled interval, 

and when the initial phase is an odd multiple of 45 degrees. It is not 

as bad with other lengths and phases, but it can still contribute to 

shifts in the peak locations (Kesler and Haykin, 1978). 
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Another problem which plagues both AR and Fourier methods Is known 

as frequency pulling. As two signals approach each other in frequency, 

the peaks remain at their proper locations until just before they 

merge. At that time, the peaks tend to pull in toward each other. The 

amount of frequency pulling is about the same for both techniques 

(Frost, 1976). 

Chen and Stegen (1974) showed that the location of the spectral 

peak due to a single sinusoid is greatly influenced by the initial phase 

of the sinusoid. This effect decreased with a larger number of samples 

per cycle. The number of points, however, also affected the peak 

location. The location oscillates about its true value at a frequency 

of about twice the frequency of the sinusoid, as the length increases. 

According to Frost (1976), the resolution of both the Fourier and 

AR techniques varies with the location of the signal in the frequency 

band. The variation tends to decrease with increasing model order. 

The statistical properties of MEM as an estimator are very 

difficult to determine analytically. Most of what is known is based on 

actual use of the method. Gersch and Liu (1978), in their study of 

MEM's statistical performance, found that the spectral estimates near 

sharp spectral peaks were likely to have large bias and variance 

errors. Conventional windowed periodograms, however, also have large 

variance there. They conclude that AR spectral estimates appear to be 

asymptotically unbiased and consistent, with variance as low as the best 

windowed periodogram. 
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One final problem with AR spectrum estimation is that it has 

difficulty in measuring the power of sinusoids. Since it is a non

linear procedure, the relative power of two signals cannot be determined 

by comparison of the relative height of their peaks. Lacoss (1971) 

states that the amplitude of the response peak is not a good measure of 

power, but that the area under the peak is. This area, however, would 

be difficult to measure when two signals are near the resolution limit. 

7. Least-squares algorithm 

As we have seen, the maximum entropy method of spectrum estimation 

depends upon the accurate determination of the AR coefficients. In 

fact, Marple (1980) states that the method used to determine the a's is 

the key to the performance of the AR technique. Several different 

methods could be used to determine these coefficients. Although it 

would be inefficient, the prediction equations could be solved directly, 

for example. Another, less computationally intensive approach would be 

to use Burg's recursive algorithm. A third method which has some 

distinct advantages would be to apply the Least-squares algorithm 

suggested by Ulrych and Clayton (1976) (independently proposed by A. 

Nuttall), and extended by Marple (1980). 

The Least-squares algorithm is based on an unconstrained least-

squares estimation of the AR filter coefficients. Marple (1980) 

introduced a recursive algorithm for this estimation process. This 



www.manaraa.com

51 

algorithm provides an implementation of the least-squares procedure with 

a computational complexity comparable to that of the Burg algorithm. 

The Least-squares algorithm eliminates or reduces several of the 

problems mentioned in the previous section. Compared to Burg's method, 

Least-squares has less bias in the frequency estimate, less dependence 

upon initial phase when dealing with harmonic processes, no line 

splitting, and somewhat sharper resolution (Marple, 1980). Its 

algorithm is only slightly more complicated. 

Burg's algorithm employs the Levinson recursion, a technique long 

known in time-series analysis. The algorithm minimizes the prediction 

error one coefficient at a time. The solution is iterated, starting 

with an AR model order of one and increasing the order by one each time 

until the desired order is reached. 

In contrast to Burg's approach. Least-squares (LS) minimizes the 

prediction error by adjusting all of the AR coefficients for a 

particular filter order at the same time. The prediction error being 

minimized is taken to be the sura of the forward and backward prediction 

errors, corresponding to running the AR filter forward and backward over 

the data, respectively. Because of this, LS has been called forward-

backward linear prediction method (FBLP). 

As mentioned earlier, the LS estimate for the AR coefficient yields 

a spectral estimate which is more stable in its peak locations with 

changes in the initial phase when analyzing sinusoids. This implies 
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that LS has a big advantage over the Burg algorithm when looking at 

short realizations of harmonic processes (Ulrych and Clayton, 1976). 

According to Marple (1980), the improved resolution of LS over Burg 

is due to the fact that the locations of the poles are unconstrained. 

Since they are allowed to approach the unit circle, the peaks can be 

sharper. On the other hand, nothing prevents them from moving into the 

unstable region outside of the unit circle. Since the frequency 

estimate depends only upon the angle the pole location makes with the 

real axis, and the distance from the unit circle, this effect is not 

bothersome. In practice, poles appear outside of the unit circle only 

rarely. It is important, however, if LS were being used to synthesize 

digital filters. 

Another result of the unconstrained nature of pole location is that 

the amplitude of the peaks has greater variability. Since it is the 

area under the peak, rather than the peak's amplitude, that is 

significant, however, this variability is of little concern. 

An effect which is bothersome, however, is the tendency of poles 

not related to a signal to appear close to the unit circle. This yields 

a spurious peak of significant amplitude. It is, however, the most 

effective of the linear prediction methods in terms of frequency 

variability and resolution. Because of this, it has served as the basis 

for some improvements to the AR methods which will be discussed in the 

next section. 
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C. Improvements to MEM; The Work of Tufts and Kumaresan 

Most of the problems with the application of maximum entropy 

spectral analysis techniques are due to the presence of noise in the 

input sequence. If the performance of these methods is to be improved, 

then, the key lies in approaching the noiseless case by improving the 

effective signal-to-noise ratio. Tufts and Kumaresan (1982) have shown 

that the performance of the linear prediction methods can be improved by 

using prior knowledge of the rank of the signal correlation matrix. 

This approach is especially useful in the analysis of a finite number of 

sinusoids in the presence of noise. 

Tufts and Kumaresan proposed a two step procedure for the 

improvement of the FBLP method at low SNR values. 

Step one is to replace the estimated noisy signal correlation 

matrix of high rank with a smoothed one of the proper rank. In other 

words, the noisy signal correlation matrix is replaced with a lower rank 

least-squares approximation to it. This step effectively increases the 

signal-to-noise ratio. 

Step two is to increase the filter order beyond the normal limits 

to improve the resolution. Since the effect of the noise is reduced, 

less averaging is needed. This allows the use of a higher filter order 

with its resultant higher resolution. 

Signals like pure sinusoids are of low dimensionality. What this 

means is that the signal correlation matrix of a single sinusoid has 

rows and columns that are linearly dependent. It is of rank one. The 
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matrix for two sinusoids would have two rows and columns which are 

independent (with the rest dependent on these) and be of rank two, and 

so on. When noise is present, however, its randomness artificially 

increases the rank of the signal correlation matrix. This added 

"information" is what the linear prediction filter tries to account for, 

degrading the accuracy of the estimation of the actual signal 

frequencies and magnitudes. 

This method can be thought of as an estimation of only the 

predictable components of the data (the signal), rather than trying to 

predict all of the data (including the unpredictable noise). 

As a result of this modification, the performance of FBLP is 

brought close to that of true maximum-likelihood estimation (not MLM), 

even at moderately low signal-to-noise ratios. The unmodified 

algorithms exhibit a threshold effect at low SNR. Below the threshold, 

the frequency estimation performance degrades rapidly. This 

modification lowers that threshold considerably. 

Maximum signal-to-noise ratio improvement occurs at a model order 

of approximately 3N/4. For model orders higher than the optimum, the 

increased variability brought about by the decrease in the number of 

terms being averaged overcomes the gain in resolution due to the longer 

filter. 

We are more concerned with the performance of this algorithm in the 

array signal processing application than with the details of its 

derivation. Those details will be left to the references (Tufts and 
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Kumaresan, 1982). A brief discussion of how the filter coefficients are 

chosen, however, may help explain how these improvements are 

implemented. 

The Tufts and Kumaresan method (TK) is computationally the same as 

FBLP with one important exception. The vector of coefficients, or 

prediction vector, is formed from a linear combination of the principal 

eigenvectors of the estimated signal correlation matrix. Eckart and 

Young showed in 1936 that the principal eigenvectors, that is, those 

eigenvectors which correspond to the largest eigenvalues, can be used to 

compute a matrix of a given rank which is a least-squares approximation 

to the given matrix. This lower rank matrix is the cleaned up version 

of the signal correlation matrix discussed earlier. The eigenvalues and 

eigenvectors of this lower rank matrix fall into two distinct groups or 

subspaces when the signal is of low dimensionality. One subspace 

corresponds to the signal, and is characterized by large eigenvalues. 

The other corresponds to the noise. Noise eigenvalues are usually well 

separated in magnitude from the signal eigenvalues. 

The principal eigenvectors corresponding to the signal eigenvalues 

are fairly Insensitive to the matrix element perturbations (i.e., the 

noise). Thus, a prediction vector derived from the principal 

eigenvectors of the noisy signal correlation matrix should be very close 

to that derived from the noiseless signal. This is the basis of the 

improvements of this method. 
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A special case worthy of note called the Kumaresan-Prony (KP) case 

occurs at the maximum allowable filter order L for a given number of 

data samples N. In this case, the noise eigenvalues and eigenvectors 

are automatically excluded, since the actual size of the signal 

correlation matrix is reduced to the correct rank simply by virtue of 

the fact that the number of available equations is 2(N-M). Since it 

requires no eigenanalysis, it is extremely easy to implement, involving 

only the inversion of a matrix which is usually small. Despite the 

greater variability brought on by the larger than optimum filter order, 

it does give improved performance over FBLP with a simple procedure. 

TK has several very interesting and very nice characteristics. The 

poles-of the prediction filter which account for the noise tend to be 

concentrated in clusters at definite, uniform positions removed from the 

unit circle. The poles for LS, in contrast to this neat arrangement, 

are scattered all over the unit disk. As mentioned earlier, some get so 

near the unit circle that they can be mistaken for signals. Thus, TK 

has a substantial improvement in ambiguity performance over LS. As a 

result of this pole placement, a spectrum plot from the TK method shows 

signal peaks which stand out well from a smoothly rippling, relatively 

uniform noise floor. 

Any frequency estimator has a performance limit known as the 

Cramer-Rao (CR) bound. (For a derivation and discussion of this bound, 

see Van Trees (1968).) The CR bound places a lower limit on the 

variance of any unbiased frequency estimator. An estimator which is 
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able to achieve this bound is known as an efficient estimator. If an 

efficient estimate exists, it is guaranteed to be the maximum-likelihood 

(ML) estimate. For this reason, estimation algorithms are often 

compared to ML performance. Because ML estimation is a highly non

linear problem, any algorithm which has comparable performance is of 

great interest (Rife and Boorstyn, 1974; Rife and Boorstyn, 1976). The 

FBLP algorithm as modified by Tufts and Kumaresan effectively achieves 

the performance limits given by the CR bound for values of SNR below the 

normal LS threshold. Thus, this method is a viable substitute for the 

more complex ML estimator. 

D. Pisarenko Harmonic Decomposition 

Pisarenko Harmonic Decomposition (PHD) was developed by V. F. 

Pisarenko in 1973. This method models the signal being analyzed as 

sinusoids with additive white noise. The sinusoids are not necessarily 

harmonically related as with Fourier analysis. For a high SNR, PHD and 

MEM give essentially the same results. At lower SNR, PHD has better 

resolution because its implicit signal model is more appropriate (Frost, 

1976). 

For an accurate model and with perfect knowledge of a finite number 

of lags of the autocorrelation function, PHD's two-sinusoid resolution 

is infinitely fine, regardless of the SNR. For this case, no finer two-

sinusoid resolution can be obtained by any other method. PHD has the 

additional advantage that power measurement accuracy is vastly improved 

over MEM (Frost, 1976). 
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The method does have several disadvantages, however, which make it 

less attractive for array signal processing. First, the autocorrelation 

function is rarely known exactly, even for a finite number of lags. It 

must usually be estimated from the data. In addition, the number of 

sinusoids present in the signal is not usually known a priori. These 

factors introduce errors and prevent the achievement of perfect 

resolution (Marple, 1978). Because of this sensitivity to the estimate 

of the autocorrelation function, PHD is less accurate than MEM for short 

realizations of a harmonic process (Ulrych and Clayton, 1976). Thus, it 

would not perform well on arrays with a small number of elements. 

Finally, like TK, PHD is formulated as an eigenvalue-eigenvector 

problem, which Increases its computational complexity. 

In view of these difficulties, PHD will not be considered further 

in this work. 
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IV. ARRAY SIMULATION PROGRAMS 

This chapter describes the specifications of the antenna array to 

be simulated, the conditions under which its performance will be 

evaluated, the algorithms to be studied, and the control programs which 

implement the simulation. It should make clear how the results and 

conclusions of the next chapter were obtained. 

The computer programs simulate a linear array of isotropic elements 

1.5 m long. The element spacing Az is 0.15 m, which implies a total of 

eleven elements in the array. With these dimensions, the entire array 

is one-half wavelength long at 100 MHz. The element spacing is one-half 

wavelength at 1 GHz. The array's performance was simulated at ten 

frequencies within these limits, spaced so that the wavelength changes 

in a fixed ratio at each step. 

A. Array Specifications 

Frequencies Tested, MHz 

1. 100 
2. 130 
3. 167 
4. 215 
5. 278 

6. 359 
7. 464 
8. 600 
9. 774 

10. 1000 

Since the resolution of any array varies with angle as well as 

frequency, the algorithms were evaluated at each frequency for each of 
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five given look angles 0^. 

Look Angles Tested, degrees 

1. 30 
2. 37 
3. 45 
4. 57 
5. 90 

These angles were chosen because they represent approximately equal 

changes in the effective aperture of the array as it is steered from one 

angle to the next. 

B. Algorithms Simulated 

The information summarized in the preceding chapter provided a 

reasonably good idea of how well each algorithm would work in the 

broadband direction finding application. To determine and compare their 

performance more specifically, several of the algorithms were coded in 

FORTRAN and run on an HP-1000 minicomputer. 

Five algorithms were tested in all. Two of these, the original 

Burg MEM algorithm as discussed by McDonough (1979), and Prony's method 

as extended by Hildebrand (1956), were found to give significantly 

poorer results than the other three in the initial testing. In view of 

this, they were not considered further. 

The other three were more rigorously evaluated. They were the 

Least-squares (LS) algorithm due to Marple (1980), the Kumaresan-Prony 

(KP) case, and the more general Tufts and Kumaresan (TK) method, both 
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due to Tufts and Kumaresan (1982). 

This chapter discusses the framework in which the array simulation 

programs applied each of these algorithms. Two distinct methods were 

used to compare the results. Each method was useful for the evaluation 

of different aspects of the direction finding performance. The 

advantages and disadvantages of each will be discussed in the following 

sections. The next chapter will discuss the actual results obtained 

from the simulation. 

C. Program ARRAY 

1. Overview 

Program ARRAY provides a plot of relative power received as a 

function of angle of incidence with respect to the line of the array. 

This program gives a good qualitative view of how the selected algorithm 

performs on a single snapshot of the incident radiation. 

2. Program flow 

Upon startup, the user is prompted to select which of the 

algorithms is to be run. All three algorithms share a common input 

routine. In this routine, up to ten incident plane waves at a single 

user-selected frequency may be specified. The routine requests the 
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amplitude, phase, and bearing with respect to the line of the array of 

each of the incident plane waves. Using this information, the routine 

computes the resultant complex voltage at each of the eleven elements. 

A random number generator is then used to add white noise to the real 

and imaginary parts of the element voltages. These voltages are then 

stored in a complex vector X for processing. The vector X becomes the 

input sequence to be analyzed by the selected algorithm. 

Control now passes to the algorithm under test. Since the three 

methods simulated in this study are all of the linear prediction type, 

the output of each is the vector of prediction coefficients 

(aj^,a2,*** ,a^). Once the coefficients are computed, the remaining 

processing is the same for each algorithm. 

As we saw earlier, the spectrum of an autoregressive process 

(Equation 3.1, which is repeated here for convenience) is 

m -k| 

' " k=l*l ' ' z=ej2*f 

Since the largest peak in the computed spectrum will be normalized 

to 0 dB by the output routine, PQ is set to 1 arbitrarily in the KP and 

TK algorithms. LS computes a value for PQ, SO that value is used, 

although it too will be normalized later. 

The sum in the denominator can be efficiently computed at a finite 

number of points using an FFT. This approach is used to evaluate the 
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spectrum at 512 values of wavenumber, the quantity In the spatial domain 

analogous to frequency. These values are then converted to dB and 

plotted as a function of bearing 0, according to the relationship 

-1 ^ 
0 = cos (—^—) 

where 0 = bearing with respect to the line of the array, 

c = velocity of light, 

= component of wavenumber along line of array, and 

f = frequency of incoming plane wave. 

ARRAY'S output, then, is a plot of the relative power received by 

the array as a function of angle of arrival. This plot is based on a 

single snapshot, or sample, of the field. 

3. Advantages and disadvantages of this format 

The plot produced by ARRAY, an example of which is shown in Figure 

4.1, is quite easy to interpret. Notice that there are two curves in 

the figure. The upper, smooth curve is the response of a uniformly 

weighted phased array scanned across the sources. The lower, more 

peaked curve is the pattern computed using algorithm LS. The model 

order M defined in Chapter III (shown on the plots as the variable LA) 

is six, and the frequency F is 1 GHz. Two plane waves, each of 

amplitude 100 V/m, with zero relative phase, and at bearings of forty 
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Figure 4.1. ARRAY plot: algorithm LS6, bearings 40°-45°, 

amplitudes 100 V/m, phase 0° 
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and forty-five degrees, are striking the array. 

The main advantage of this program's format is the ease of 

interpretation of the output. Relative received power as a function of 

angle of arrival is a very natural way to look at the problem of 

resolving sources in angle. It provides the most convenient means of 

comparing the algorithms' performance to a conventional array pattern. 

It also allows possible ambiguities to be easily assessed, since they 

appear in the plots as false peaks. 

Some aspects of performance, however, are difficult to evaluate 

using this format. First, it is difficult to arrive at a suitable 

criterion for determining the point at which two sources are resolved. 

There is no first null to determine a specific beamwidth, as there is in 

a conventional pattern. What is more, since the results are derived 

from a single snapshot of a field which is corrupted by noise, there can 

be great variability in the. pattern from one snapshot to the next. Two 

sources which might be perfectly resolved in one snapshot may merge into 

a single peak in the next. Some other format which takes this variation 

into account was necessary to arrive at a meaningful evaluation of the 

resolution of these algorithms. 

A second disadvantage of ARRAY stems from the fact that an FFT is 

used to evaluate the pattern. The number of points evaluated is held 

constant over the entire frequency band. It turns out that as the 

frequency of operation is decreased, fewer and fewer of these points 

correspond to physically real angles. Thus, at low frequencies. 
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consecutive points on the plot correspond to rather large increments in 

angle. This makes the plots at low frequencies of operation rather 

coarse. 

ARRAY was used, then, to get a good qualitative idea of the 

behavior of the various algorithms, and to assess their potential for 

ambiguity. A second major program, called ZPLOT, was written to get 

quantitative information concerning two-signal resolution and 

statistical variability. 

D. Program ZPLOÏ 

1. Overview 

As discussed earlier, all of the useful spectral information 

contained in an AR model of a process can be extracted from the 

locations in the complex plane of the zeros of the prediction error 

filter transfer function. ZPLOT generates a plot of these zeros for 25 

different runs of the algorithm under test. Because of the variability 

introduced by the noise, the zeros representing a signal do not appear 

in exactly the same place for each snapshot. Instead, they group 

together in clusters. The size of the clusters indicates how much 

variability there is in the angle of arrival and amplitude estimate. 

Two signals coming from nearly the same direction would be plotted 

as two clusters of zeros very close to each other. Resolution, for our 
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purposes, was defined to be the angle at which the two zero clusters 

just touch each other. Beyond this point, the separate custers rapidly 

merge into one. This format allowed a single plot to clearly indicate 

the variability- of the estimate and demonstrate its effect on the two-

signal resolution. 

2. Program flow 

ZPLOT inputs the parameters of the simulation in much the same way 

as ARRAY. Rather than plotting the spectrum of a single snapshot, 

however, ZPLOT computes the AR coefficients for twenty-five different 

realizations of noise added to the element signals. Each set of 

coefficients represents a slightly different prediction error filter 

(PEF). 

ZPLOT then uses a complex polynomial rooting routine to solve for 

the zeros of each PEF. These zeros are finally plotted in the complex 

plane. 

3. Interpretation of the plots 

Figure 4.2 shows the zero locations in the complex plane as a 

function of bearing at IGHz and at 100 MHz. The expression 

$ = — Az cos 0, where 
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ZERO LOCATION IN Z-PLANE 

A S  A  F U N C T I O N  O F  B E A R I N G  

1  G H Z  

IB' 

100 MHZ 

90* 

$ = H cos 0 

X  

Figure 4.2. Zero location In z-plane as a function of 
bearing 
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X = wavelength of the incoming signals 

Az = interelement spacing 

6 = bearing from line of the array, 

gives the angle a signal zero makes with respect to the real axis. The 

closer the zeros lie to the unit circle, the greater the amplitude of 

the signal peaks they represent. 

Figures 4.3 and 4.4 illustrate the output of ZPLOT. Both are runs 

of the Least-squares algorithm, with model order six. The two incident 

signals are of amplitude 100 V/m and 0 degrees relative phase. In 

Figure 4.3, the signal bearings are 70 and 75 degrees. Figure 4.4 shows 

signals incident from 70 and 72 degrees. Notice the increase in 

variability, shown by the increase in cluster size, in Figure 4.4. 

Figure 4.5 shows a case where the signals are no longer resolved. Here, 

the bearings are 70 and 71 degrees. 

The other zeros scattered about the unit disk in Figures 4.3 

through 4.5 are placed by the algorithm to most closely account for the 

noise. The number of zeros of the PEF is equal to the model order. 

Thus, if there are two signals, and if the model order is six as in 

these figures, every run will contribute two signal and four noise zeros 

to the plot. Occasionally, one of these noise zeros will be placed 

close to the unit circle. This would correspond to a false peak 

indication in ARRAY. Thus, ZPLOT can also be used to evaluate the 

ambiguity of the various algorithms. 
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E. Summary 

ARRAY and ZPLOT were used together to evaluate the broadband 

direction finding performance of the Least-squares, Kumaresan-Prony, and 

Tufts and Kumaresan algorithms. Specifically, the smallest angular 

separation 26 was found such that two incoming plane waves were just 

resolved. The two waves were centered on a given look angle 9^ so that 

0^ = 0Q - A and 6^ = 0q + A. Resolution was evaluated at five values 

of look angle 0q ranging from 30° to 90°, at ten frequencies in the 

range 100 MHz to 1 GHz for each angle. The results of these evaluations 

along with other observations are discussed in the next chapter. 
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V. RESULTS AND COMPARISONS 

A. Ambiguity Performance 

Ambiguity performance is an extremely important criterion in the 

evaluation of direction finding techniques. No matter how good an 

algorithm's resolution may be, false or ambiguous indications of signal 

angle of arrival can render the technique unusable. This is especially 

true in cases where jamming signals are a part of the signal 

environment. 

As discussed earlier, the techniques studied here have no sidelobes 

in the usual sense of the word. This fact gives these methods a 

distinct advantage over conventional beamforming techniques. Some 

aspects of their behavior, however, can lead to false indications of 

signal location. In particular, the way in which the algorithm chooses 

the placement of the extraneous (noise) zeros in the complex plane 

determines its ambiguity performance. The algorithms evaluated in this 

study differed greatly in this respect. 

The differences can be clearly seen in Figures 5.1 thru 5.3. These 

figures show the array's response to two 100 V/m plane waves, of 0° 

relative phase, with bearings of 40 and 45 degrees. Figure 5.1 is KP, 

and Figure 5.3 is TK8. KP is a special case of TK — in fact, it is 

just an efficient method of computing TKIO. Thus, the response of the 

two algorithms is quite similar. But notice the difference between 

those algorithms and LS6. The resolution of LS appears to be just as 
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good as the other two, if not better. In fact, if we were to look at 

ZPLOT, we would see that the variance of the zero locations is at times 

actually smaller. The appearance of noise zeros very near the unit 

circle, however, causes spurious signal indications if their location is 

within the visible range. The four extra peaks in Figure 5.1 

demonstrate this. 

KP and TK tend to be much more well-behaved as a result of their 

placement of extraneous zeros. Comparing a run of ZPLOT for LS6 shown 

in Figure 5.4, with one for KP, in Figure 5.5, illustrates the 

difference between the two methods. The evenly spaced noise clusters of 

TK, which are rather far removed from the unit circle, produce the low 

level ripple seen in Figure 5.2. The randomly scattered noise zeros of 

LS, on the other hand, are placed so close to the unit circle that they 

produce responses comparable in magnitude to the actual signals. Thus, 

the ambiguity performance of LS is greatly inferior to KP and TK. The 

problem gets worse as the model order is increased, as discussed by 

Tufts and Kumaresan (1982). 

B. Two-Signal Resolution 

1. Effect of the signal-to-noise ratio 

One of the greatest weaknesses of high resolution spectrum 

estimation algorithms is their sensitivity to the signal-to-noise 
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ratio. As we saw in Chapter III, at low SNR the implicit signal model 

of most methods no longer applies, and the results become poor. In this 

study, we are more concerned with obtaining sufficient operating 

bandwidth than we are with performance at low SNR. For completeness, 

however, the behavior of the algorithms was evaluated at different 

values of SNR. 

A control program was written to calculate the variance of the 

spatial frequency estimate cos 9 for comparison with the Cramer-Rao 

(CR) bound on the variance of this estimate. Since the angle $ that the 

signal zeros make with the real axis in ZPLOT is Az cos 0, the 

variance of $/Az was computed. Program flow is much like ZPLOT. An 

outer loop gradually increases the SNR from 0 to 60 dB. For each 

execution of the outer loop, the algorithm under test is run twenty-five 

times at that particular SNR. The variance of <t/Az is then computed, as 

well as the CR bound. After the variance is computed for all values of 

SNR, the results are plotted. 

Because the variability of the noise zero location is so large for 

LS, the simple method used to separate signal zeros from noise zeros did 

not work. The approach did work well for KP and TK, however, since 

their zeros are more well-behaved. 

Two examples of SNR performance are shovm in Figures 5.6 and 5.7. 

Both illustrate the threshold effect discussed by Tufts and Kumaresan. 

Both figures correspond to two incident plane waves 1.8 degrees apart, 

centered on 0 = 90° and at a frequency of 1 GHz, The dashed line in 
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each plot Is the CR bound. The solid line is the actual performance of 

the algorithm. Notice that higher values along the ordinate correspond 

to smaller values of variance. That Is, the larger the value of this 

function, the more consistent the spatial frequency estimate. 

Figure 5.6 is a plot of the performance of the KP algorithm. Note 

that, at high SNR, KP runs roughly parallel to the bound. Its 

performance is roughly two dB less than the theoretical maximum. At 33 

dB SNR, however, a threshold is reached. Below this threshold, the 

performance deteriorates very rapidly. For perspective, the point where 

the signal zeros just touch in ZPLOT corresponds on this plot to an 

ordinate value of 17 dB. This value is achieved for an SNR of 40 dB. 

Using ZPLOT at signal levels of 40 dB, A was determined to be 0.9°. 

Thus, the results of ZPLOT and the variance vs SNR computation are 

consistent. 

Figure 5.7 shows the results when TK8 is used. This algorithm, for 

practical purposes, achieves the CR bound above threshold. Its 

threshold is also lower than KP by approximately 3 dB. The fact that it 

effectively achieves the CR bound is important. More complicated 

spectrum estimation algorithms exist, but none of them can do better 

than the CR bound. This result tells us that TK is "good enough", at 

least in terms of its variance. 

To summarize, these results are consistent with those of Tufts and 

Kumaresan. TK was found to have the lowest variance over the largest 

range of SNR values. The optimum model order did turn out to be 

approximately 3N/4 (in this case, the optimum is eight). 
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2. Effect of model order 

Since the variance of the spatial frequency estimate and the two-

signal resolution are intimately related, the model order which gives 

the lowest variance also gives the best resolution. That statement must 

be qualified somewhat, in that the definition of resolution we are using 

in this study differs from the usual. 

The usual qualitative definition of resolution is that when there 

are two signals present, two peaks can be seen in the received power vs. 

angle plot. This definition does not take into account the variation of 

the angle estimate from one run to the next. Our definition is more 

restrictive. Physically, it says that allowable values of the angle 

estimate lie within a range centered on the actual signal direction. 

Furthermore, the range of one signal may touch but not intersect the 

range of the other signal. This is what occurs when the signal zero 

clusters in ZPLOT just touch. 

A high model order will allow two closely spaced peaks to be 

separated better than a low order. Since a high model order also 

increases the variance of the estimate and increases the probability of 

seeing spurious peaks, the optimum model order must be a compromise. 

This effect can be seen in the sequence of Figures 5.8 through 

5.11. These figures show the results of ZPLOT for 100 V/m plane waves 

incident from 70° to 75®. The algorithm is TIC, and model orders of 4, 

6, 8, and 10 are shown. Notice how the variance, that is, the size of 
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the signal zero clusters, decreases through model order eight. Past 

this optimum value, it begins to increase. 

This result holds true for LS as well. The optimum occurs at lower 

model orders, however, due to the noise effects we discussed in Chapter 

III. 

3. Effect of signal frequency and angle for a fixed length array 

The primary thrust of this study has been the evaluation of how 

well these array direction finding algorithms maintain their resolution 

over the full range of operating frequencies. Since the effective array 

length (and consequently the resolution) depend upon the angle of 

arrival of the signal, the look angle 6^ must also be considered. 

ZPLOT was used to evaluate the resolution of each of the three 

methods we have compared so far. In looking over the measured 

resolution at the different frequencies and look angles, a regularity 

appeared in the ratio of a particular combination of array parameters. 

This regularity led to the characterization of algorithm resolution for 

all values of frequency and look angle by a single parameter. This 

section discusses the reasoning behind this characterization, how it can 

be used to predict array performance with a given algorithm, and how 

well it worked in the computer simulation. This characterization is 

probably the most significant result of this work. 
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a. Relationship between two-signal resolution and modulation 

envelope length Rife and Boorstyn, in their paper on digital 

estimation of the frequencies of multiple tones (1976), found a very 

interesting fact from their computer calculations. They were computing 

the CR bounds on the variance of the frequency estimate for two 

signals. As the two signals were brought closer together in frequency, 

they found that there was a critical frequency separation below which 

the CR bounds increase very rapidly. (Remember, the CR bound is a lower 

bound on the variance of the estimator, so an increasing bound means 

poorer performance.) This minimum frequency separation was 

4IT/NT radians/second, modulo 2ir/T. Here, N is the number of samples, 

and T is the Intersample spacing. 

It seemed likely that this particular value of difference 

frequency, 4n/NT, must have some physical significance. It turns out 

that it does. 

Consider the sum of two complex tones at frequencies u>, and oi, 
i 6 , 

respectively; 

V(to) = exp (jw^t) + exp (jwgt) 

Taking a hint from the identity 

Wj + Wg lOj- Wg 
cos w.t + cos oj-t = 2 cos ( = ) cos 5 ), 
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write 

(u)j^ + Wg) t - WgïC 
exp (jw^t) = exp (j 2 ) exp (j ^ ) 

(w, + a>j)t (li), - Wi)t 
expCjWgt) = exp (j 2 ) exp (j ^ ) 

Then 
(u), + a)«)t 0), t Ujt 

V(w) = exp (j 2 )lexp (j—^—) + ̂ xp (-j—^)] 

where - ̂ 2 

U),t (o) , .01 y ) t  
V(to) = 2 cos (—^) exp (j 2 ) 

The result is a complex tone at a frequency which is the average of 

the two tones, amplitude modulated by the cosine of one-half of the 

difference of the frequencies of the two tones. 

What is the period Tj of the modulation envelope? 

T. . = iï.. 
•1 ."d 

2 

At the critical frequency separation, Thus, Tj = NT, 

approximately the total length of the sampling interval. That is, the 

critical frequency separation occurs when the modulation envelope length 
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is approximately equal to the length of time spent sampling. When the 

frequency separation is less, the period of the modulation envelope is 

longer than the total sampling time. When this occurs, the performance 

begins to degrade sharply. 

These results from the time domain can be directly transferred to 

the spatial domain and the array direction finding problem. Consider a 

linear array along the z-axis with two plane waves striking it at angles 

from the line of the array of 8^ and 9^. Let the number of elements be 

N, the interelement spacing be Az, the length of the array 

(N-l)Az be L, and the wavelength of the plane waves be X. 

Then 

V(z) = exp (j-^ z cos 8^) + exp (j z cos Sg) 

Following the same procedure as before, 

V(z) = 2 cos (y z (cos - cos d^)) exp (j y z(cos + cos 8 g)) 

Continuing the analogy from the time domain, the critical spatial 

frequency separation should occur at ~ where 

""sd = "T ® r  

The length of the modulation envelope is 
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Z = ̂  = Al . 

^ ""ad '"sd 

2 

At the critical frequency, the modulation envelope length 

Zj = L, the array length. 

These arguments suggest that the ratio of the physical length of 

the array to the length of the spatial modulation envelope caused by the 

interference of the two incident plane waves could be an important 

quantity. 

Let this ratio be represented by the function 

, L(cos 9.- cos 0-) 

K(0i, 02» X) = %- 2X 
a 

When ZPLOT was used to determine the resolution at a given look 

angel 0^, the program was run with 0^^= 0^- A and 0^ = 0q + A for 

various values of the angle A. The smallest A was found such that 

signals at 0^and 0^ could be resolved. Substituting these relations for 

8^ and 0^ into K(0^,02,X) gives 

K(0q,A,X) = Y sin 0^ sin A. (5.1) 

Equation 5.1 was evaluated at the point of resolution for each look 

angle and each frequency of each algorithm. For each method, 

K(0q,A,A) turned out to be very nearly constant. Consider the results 

for the KP algorithm with 0^ = 37°; 
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Freq (MHz) MOD.ENV.(Wavelengths) ARRAY LENGTH(Wavelengths) RATIO K(%) 

100 7.39 0.500 6.77 

130 9.57 0.650 6.79 

167 10.6 0.835 7.86 

215 15.9 1.08 6.76 
278 19.1 1.39 7.29 

359 23.8 1.80 7.54 

464 31.7 2.32 7.31 

600 47.6 3.00 6.30 

774 54.1 3.87 7.11 

1000 79.3 5.00 6.30 

Average K = 7.00% 

Standard deviation = 0.511% 

Since A was determined only to the nearest degree for all but the 

two highest frequencies, the relative consistency of the values of K was 

considered to be significant. Knowledge of the value of K for a 

particular algorithm allows us to predict A for a given look angle and 

frequency. This, in turn, can be fed back into the simulation to 

determine whether the conclusion that K is a constant is valid. This, 

as it turns out, will help us to explain why the measured value of K 

varies as much as it does. 

b. Prediction of resolution Using Equation 5.1, A can quite 

easily be predicted from the look angle, frequency, array length, and 

K. Solving for A in 5.1: 

^ [ L sin ej, (5-2) 
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Given an appropriate value of K, the resolution 2a can be computed 

for any frequency and look angle. This K will depend upon the algorithm 

used, the array (possibly the number of elements and element spacing as 

well as just the length L), and the criterion used to determine when 

two signals are resolved. 

Figure 5.12 shows a plot of A versus frequency for algorithm KP. 

Here, 6q is 37°. The plus signs indicate the measured values, and the 

solid curve is a graph of Equation 5.2. K is taken to be 0.07. This 

plot is typical; the measured values lie both above and below the 

predicted curve by a small amount, but they follow the functional form 

quite well. Those points which differ by a significant amount, such as 

the point at F = 167 MHz in the figure, are not due simply to 

measurement error. The simulation was repeated for these points, and 

the same results were obtained. A possible explanation for these 

anomalous points will be explored in Section 3.d. 

c. An array theory approach to delta An expression for A of 

the same form as Equation 5.2 can be derived by a completely different 

approach using array theory. Recall from Chapter I that the output of a 

linear array can be written in the form 

N-1 
AF(9) = E a exp(jngdcos8 + a) 

n = 0 

where a^ = the element weighting coefficients 
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g = 2n/x 

d = Interelement spacing (Az, in our case) 

6 = angle with respect to line of array 

a = element to element phase shift 

If 0^ is the position of the desired maximum, a should be set 

equal to -g cos 0^. Setting the array weights all equal, 

sin r N (pd(cos 0 - cos0 ) 
AF(0) = — 

sin ^ (3d(cos 0 - cos 0^) 

Suppose we use the Rayleigh criterion for resolution, i.e., the 

sources are resolved when they are separated by 1/2 BWFN. Let the array 

be pointed in direction 0^. Then the array factor at 0^ should be zero; 

s i n N  ( 3 d ( c o s 0 c o s  0 „ ) )  

AQ Ï —= 0 
sin Y (0d(cos 0^ - cos Og)) 

This implies 

sin Y N (3d (cos 0^- cos Og)) = 0, which requires 

Y 3d(cos ~ cos 0^) = - miT m=0,l,2,3,»«« 

In this case, m is one. Since 
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cos ~ cos 02 = 2 sin 0q sin A, 

N0d sin 9q sin A = ir 

sin A = ^ 
Ngd sin 0p 

^ ^ (NdX^rr) sin 9^ ^ 

= ' ».3) 

Equation 5.3 is of exactly the same form as Equation 5.2, even 

though the approaches used to derive each were completely different. 

d. Variance as a function of frequency at resolution The 

resolvability criterion we have established effectively states that two 

signals are resolved when the variance of their signal zeros is below a 

given threshold. The threshold itself corresponds to a fixed value of 

variance, regardless of which algorithm or set of input conditions is 

being used. Thus, the expression for delta given in Equation 5.2 may be 

verified by sweeping over the operating frequency range of the array, 

computing delta at each frequency, and simulating the array's 

performance at this value of delta. If the variance is a constant as 

the frequency is changed, we have a good indication that Equation 5.2 

gives the correct functional dependence of the resolution on the input 

parameters. 
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This check on Equation 5.2 was implemented, first for the CR bounds 

at the predicted value of delta, and then for the actual algorithms. 

The CR bound result is shown in Figure 5.13. Signal amplitudes equal 

100 V/m, with 0 relative phase. The look angle for this run is 90°, and 

K is 0.07. Notice that the bound on the variance is indeed a constant, 

at a level of about 18 dB. This level would vary with different 

amplitude signals or a different value of K, but the variance is still a 

constant with frequency. This result holds true for the other look 

angles as well. Equation 5.2 predicts the proper value of delta to just 

meet the criterion for resolvability. 

Figure 5.14 shows the actual variance for algorithm TK8. In this 

case, all of the input parameters are thé same as for Figure 5.13. With 

this look angle (8q = 90°), the results are just as predicted. The 

actual variance is a constant for the predicted value of delta as the 

frequency sweeps over the operating range. It appears that Equation 5.2 

can predict the resolution attainable for a given algorithm from the 

input conditions. 

Things are not quite so simple, however, at values of look angle 

other than 90°. Figure 5.15 shows TKB's performance at a look angle of 

57°. The variance, although relatively constant and with no particular 

trends, does wander over about a 4 dB range with no immediately apparent 

pattern. The results are repeatable, however. This means that the 

variations are due to characteristics of the algorithm itself, not just 

random fluctuations. 
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A possible explanation for this behavior lies in the sensitivity of 

the algorithms to initial phase of the sinusoids. At a look angle of 

90°, the two signals are arriving from angles 90° - A and 90° + A. 

The relative phase at the center of the array, and thus, the array's 

location within the modulation envelope, remain the same as A changes. 

This is not true for other look angles. Initial phase effects can enter 

in and degrade the performance. This may be the reason for the 

anomalous points in Figure 5.12. 

This explanation is supported by Figures 5.16 through 5.18, which 

show the actual variance of the TK8 algorithm for look angles of 85, 80, 

and 75 degrees, respectively. If the variation in performance were due 

to phase effects, the problem would increase with decreasing angle of 

incidence. As shown in the figures, this is what actually occurs. 

e. Variance as a function of angular separation of sources The 

performance of the algorithms as the angular separation of the sources 

changes is another example of the influence of the position along the 

modulation envelope. To test this aspect of the algorithms' 

performance, a control program was written to vary delta from zero to 

some maximum value. Both the CR bound and the actual variance were 

computed for each delta. The frequency of operation and the look angle 

are fixed. 

This program produced some interesting results. For example, 

consider Figure 5.19, which shows TKIO at 1 GHz. In this and the 

following figures, there are two sources present, each with amplitude 
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100 V/m. The dashed curve is the CR bound, and the solid curve is the 

actual performance. The relative phase between the two sources is zero 

degrees. 

As would be expected, the variance for small values of delta is 

2 
quite large, leading to a negative value of 101og(l/o ), As the source 

separation increases, the variance decreases. Once the curves shown 

exceed approximately 17 dB, our criterion for resolution is met. The 

variance continues to decrease (shown as higher values of 

2 
10 log(l/a ) in this format) as the sources are spread further apart. 

With algorithm TKIO expecting two signals (or equivalently, the KP 

algorithm), however, a curious thing happens. A point is reached as the 

separation increases where the variance stops improving and starts 

getting worse. As shown in the figure, nulls appear at certain critical 

angles. The algorithm's performance becomes very poor at these values 

of delta. They are effectively blind angles. Figures 5.20 and 5.21 

illustrate what happens to the zeros of the PEF at the blind angles. 

Figure 5.20 shows TKIO expecting 2 signals at A = 3.75°, 9q = 90°. 

This is near the first peak in Figure 5.19. Figure 5.21 shows what 

happens when delta is increased to 5.75°. Instead of improving the 

variance, the performance is worse. The signals would be visible as two 

separate peaks by virtue of their large spacing, but the angle of 

arrival estimate would vary greatly from snapshot to snapshot. 

The position of the first null (blind angle) depends upon the 

relative phase of the two signals. For in-phase signals, the first null 
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corresponds to A=0. As the phase difference increases, the null moves 

out toward higher values of delta, as shown in Figure 5.22. There, the 

phase difference is 90°. The situation at 180° phase difference is tiie 

same as that at 0°« 

Once again, the ratio of the actual length of the array to the 

modulation envelope length appears to be an important parameter. For 

example, when the phase difference is 45°, or one-eighth of a cycle, the 

first null appears at a value of delta such that L/Z^ = 0.125 (one-

eighth) . When it is 90°, or a quarter cycle, the value of delta at the 

first null is such that the ratio is one-fourth, and so on. The nulls 

following the first are separated from it by multiples of one-half of 

the modulation envelope length. 

The problem of blind angles appears to affect only the KP case 

(TKIO). TK9 has some moderate ripple, as seen in Figure 5.23, but 

nothing as severe as KP. Lower model orders exhibit less ripple. 

f. Dependence of TK and KP on number of signals expected A 

qualitative look at how these algorithms are affected by an Incorrect 

assumption of the number of signals present yields some interesting 

results. In the light of the discussion of these methods in Chapter 

III, the results are entirely reasonable. 

TK and KP do not appear to be overly sensitive to the assumed 

number of signals, as long as it Is greater than or equal to the actual 

number of signals present. The maximum number of signals indicated is 

the assumed value. Thus, if the assumption is low, some of the signals 
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will be missed. If it is too high, the resultant spectrum is noisier 

than it needs to be, and ambiguity performance is degraded. But, the 

correct number of signals appear in their proper positions. 

Recall that these algorithms fit a smoothed matrix of the assumed 

rank to the actual signal correlation matrix. If the assumed rank is 

too small, that smaller number of signals will be fit to the data in the 

best way possible. Their positions will be more or less an average of 

the true locations. If the rank is too large, not all of the noise 

effects will be cancelled. 

These conclusions are illustrated by Figures 5.24 through 5.33. In 

all of these runs, two 1 GHz, 100 V/m signals of 0 degrees relative 

phase are actually present. Their bearings are 75 and 80 degrees. The 

figures show first ARRAY and then ZPLOT for the assumption of one, two, 

three, four, and five signals present, respectively. The algorithm is 

TK8. 

Notice especially the change between Figures 5.27 and 5.29. It is 

interesting that the variance of the noise zeros in Fig. 5.29 is 

increased so much more than that of the signal zeros. Figure 5.30 is 

beginning to look very much like an LS plot, complete with a spurious 

peak. And, indeed, that is what it is. With two signals present but 

four expected, much of the noise eliminating property of the TK 

algorithm is gone. The result degrades to the F5LP algorithm upon which 

TK is based. There is still some advantage in using TK, however, even 

when five signals are expected with only two present, as in Figures 5.32 
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and 5.33. First, although they look very much like LS plots, the model 

order here is higher than LS would allow. Secondly, the variance of the 

signal zeros remains quite small — significantly smaller than LS under 

these conditions. Thus, the direction estimate would be more consistent 

from snapshot to snapshot. 

Similar runs with three signals present led to the same 

conclusions. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

This work is a study of the broadband direction finding 

capabilities of array signal processing algorithms. It has sought to 

determine whether these algorithms are able to achieve satisfactory 

broadband direction finding performance with a given fixed array size. 

The performance of several of the new high resolution spectral analysis 

algorithms was evaluated and compared by computer simulation. The 

performance characteristics of concern in this application are high 

resolution, low ambiguity, and broad operating bandwidth. 

The results of this investigation support the following 

conclusions. First, under the proper conditions, these algorithms can 

achieve greatly superior broadband direction finding performance 

compared to conventional linear beamforming techniques. 

The qualification "proper conditions" is necessary because of a 

second conclusion: the algorithms are sensitive to both the element 

signal-to-noise ratio and the initial phase of the waves striking the 

array. The algorithms simulated exhibited the threshold effect with 

decreasing signal-to-noise ratio discussed by Tufts and Kumaresan 

(1982). Performance depended upon both the model order and the noise 

handling properties of the algorithm. The improvements suggested by 

Tufts and Kumaresan did lead to better noise performance in this 

application. 
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Phase effects appeared in algorithm KP as blind angles — 

particular separation angles where performance is poor even though the 

separation angle is quite large. It appears that phase effects also 

entered into the variation in performance with frequency of both KP and 

TK. 

A third, very interesting conclusion is that the ratio of the 

physical length of the array to the modulation envelope length is a 

parameter of fundamental importance in this application. (The 

modulation envelope is that of the interference pattern set up by the 

two incident plane waves.) The fact that this ratio is a constant at 

the point of resolution allows both the comparison of different 

algorithms using a single parameter and the prediction of array 

performance as a function of frequency and angle given the array 

specifications. 

The simulation results lead to the following specific conclusions: 

1. Algorithm TK8 gave the best performance in terms of its 
resolution, behavior at low SNR, and sensitivity to initial 
phase. It effectively achieved the theoretical bound on the 
variance of the angle estimate for the two signal case. 

2. Optimum model order for algorithm TK was approximately 3N/4, as 
suggested by Tufts and Kumaresan. 

3. Although it gives the best performance, algorithm TK was the 
most complex computationally. It requires the computation of 
the eigenvalues and eigenvectors of the signal correlation 
matrix. It, of course, takes the longest time to run. 

4. Algorithm KP, a special case of TK, is simple to compute and 
retains some of the noise canceling properties of TK. Since its 
model order is not optimum, however, its resolution is slightly 
poorer than TK8. In addition, it exhibits blind angles where 
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performance Is poor even though angular separation Is quite 

wide. 

5. The statistical properties of LS could not be effectively 
evaluated. The variance of the noise zeros was so great that 
the program could not automatically separate them from the 
signal zeros. This fact alone, however, Indicates that LS is 
inferior to TK and KP in terms of the variance of its angle 
estimate. In addition, its placement of noise zeros close to 
the unit circle leads to poor ambiguity performance. 

As is often true, this study has raised more questions than it has 

answered—some theoretical, some requiring additional simulation, and 

some Important in a practical implementation of a high resolution signal 

processing array. 

Perhaps the most fundamental theoretical question raised by these 

results is, why does the ratio of the physical length of the array to 

the modulation envelope length play such an Important role? Its 

Influence can be seen in both the OR bounds, which are algorithm 

Independent, and in the actual performance of the algorithms. Although 

it is perhaps reasonable that this ratio should be Important, the 

specific physical reasons for why it is are not clear. 

Further simulation work is needed to answer at least two questions: 

1. What is the effect of the number of elements and their spacing 
on algorithm performance? This simulation left those parameters 
fixed and considered only the total length of the array. 

2. How does the assumption of the number of signals present affect 
the quantitative performance of TK and KP? The qualitative 
remarks in the preceding chapter should be verified and 
quantified. 

A question which should be looked at both theoretically and by 
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simulation is the effect that multiple snapshots could have on algorithm 

performance. How should multiple snapshots of the field be best 

combined? Could they be used to enhance the effective SNR? Would the 

variation in initial phase from snapshot to snapshot eliminate the 

problem of blind angles? 

Finally, before these high resolution algorithms could be used to 

advantage in a real direction finding system, several practical aspects 

of implementation must first be considered. The first aspect would be 

the specification of the system itself. What are the size and weight 

constraints? How fast would the processing element (or elements) have 

to be? How much precision is needed? How would variations in element 

spacing or gain affect the performance? This investigation has dealt 

only with single snapshots of unmodulated signals. What if the signals 

were modulated? What kinds of countermeasures might be encountered, and 

what could be done to minimize their effects? These are just a few of 

the questions and problems which a practical implementation would have 

to address. 

This study has been significant in that it has shown that high-

resolution spectral analysis algorithms have the capability to improve 

the broadband direction finding performance of an array. The potential 

improvement is great enough that practical implementation of these 

techniques should be actively pursued. 

This practical implementation should be accomplished in two 

steps. First, the questions raised above should be answered by further 
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simulation. The additional simulation could also be used to test 

algorithm optimization and display formats. Secondly, a prototype 

signal processing array should be built and tested using the algorithms 

simulated here. This step would make clear which of the practical 

problems mentioned above are most serious. Differences in simulated and 

actual performance could be evaluated and problems identified. This 

test array would lay the groundwork for future practical high resolution 

broadband direction finding systems. 
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